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Electronic bound states around charged impurities in two-dimensional systems with structural inversion
asymmetry can be described in terms of a two-dimensional hydrogen atom in the presence of a Rashba
spin-orbit interaction. Here, the energy levels of the bound electron are evaluated numerically as a function of
the spin-orbit interaction, and analytic expressions for the weak and strong spin-orbit coupling limits are
compared with the numerical results. It is found that, besides the level splitting due to the lack of inversion
symmetry, the energy levels are lowered for sufficiently strong spin-orbit coupling, indicating that the electron
gets more tightly bound to the ion as the spin-orbit interaction increases. Similarities and differences with
respect to the two-dimensional Fröhlich polaron with the Rashba coupling are discussed.
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The two-dimensional �2D� hydrogen atom, i.e., an elec-
tron constrained to move in a plane and subjected to an at-
tractive Coulomb potential,1–5 is a theoretical construction
which, besides being of interest in itself, has also important
physical realizations. It can describe indeed the effect of a
charged impurity in 2D systems such as quantum wells and
surface states, or in extremely anisotropic three-dimensional
crystals,1 as well as excitons in semiconductor 2D
heterostructures.5

The spin-orbit �SO� interaction, arising from the structural
and/or bulk inversion asymmetries, characterizes several of
the above mentioned low-dimensional systems,6 and gives
rise to energy level splittings ranging from a few hundreds of
meV, depending on the material characteristics �see, for ex-
ample, Ref. 7�. Furthermore, the possibility of tuning the SO
interaction in semiconductor quantum wells by means of ex-
ternal applied voltages represents the key feature for appli-
cation in spintronics. Given this situation, it becomes there-
fore natural to assess how the properties of a 2D hydrogen
atom are affected by the SO interaction.

Several studies have already been devoted to the effect of
the SO coupling in electrons interacting with central poten-
tials, such as those describing hard-wall or parabolic quan-
tum dots.8–12 However, despite its potential interest for SO
coupled low-dimensional systems, the specific 2D Coulomb
problem appears to have been only marginally considered in
the literature.12 In this Brief Report, the 2D Coulomb prob-
lem is numerically solved for an electron interacting with a
Rashba potential, which is the SO coupling arising from
structural inversion asymmetry in the direction perpendicular
to the 2D plane.13 It is found that the Rashba interaction
removes partially the initial degeneracy of the 2D hydrogen
atom, and the resulting energy levels are twofold degenerate
due to the time-reversal invariance of the model. Further-
more, it is shown that the SO interaction renders the electron
more tightly bound to the ion, confirming a general trend
observed for other central potentials and for 2D electrons
coupled to phonons.

The Hamiltonian for a 2D hydrogen atom in the presence
of a Rashba SO potential is as follows ��=1�:
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where p̂q=−i� /�q is the electron momentum operator �q
=x ,y�, p̂2= p̂x

2+ p̂y
2, me is the electron mass, and �x and �y are

the Pauli matrices. The last term of Eq. �1� describes the
Rashba SO interaction with coupling parameter �. For �
�0 but zero Coulomb interaction �Z=0�, Eq. �1� is easily
diagonalized in the momentum space, and the resulting en-
ergy dispersion of the free electron is composed of two
branches Ek,�= �k�kR�2 /2me−ER, where kR=me� is the
Rashba momentum. In the ground state, the electron has en-
ergy EkR,−=−ER, where ER=kR
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In the presence of the Coulomb interaction, it is conve-
nient to rewrite Eq. �1� in polar coordinates,
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is the free electron Hamiltonian. Equation �2� commutes with

the z projection of the total angular momentum Ĵz= L̂z

+�z /2, where L̂z=−i� /��, so that the eigenfunctions of Eq.

�2� can be chosen to be simultaneously eigenfunctions of Ĵz.
Since H in polar coordinates allows for separation of vari-
ables, its eigenfunctions have therefore the following
form:8–12

� j�r,�� = � f j
−�r�ei�j−1/2��

f j
+�r�ei�j+1/2��� , �4�

where j= �1 /2, �3 /2, . . . are the eigenvalues of Ĵz. The
lack of spatial inversion symmetry induced by the presence
of the Rashba interaction lowers the symmetry of H when
��0. As shown below, this will induce a splitting of the
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energy levels compared to the case when �=0. Note, how-

ever, that H commutes with the time-reversal operator K̂

= i�yĈ, where Ĉ is the operation of complex conjugation, so

that � j and its Kramer conjugate K̂� j have the same energy.

This implies that, since Ĵz� j = j� j and ĴzK̂� j =−jK̂� j, the
energy spectrum of H is invariant under the change j→−j.

For bound states, the Schrödinger equation H� j =E� j is
rewritten by introducing q0

2=−2meE and the dimensionless
radial variable �=2q0r. By using Eq. �4�, one therefore finds
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where �=2meZe2. The first terms in Eqs. �5� and �6� repre-
sent the differential equations for the radial wave function of
the usual 2D Coulomb problem �i.e., without SO coupling�
with quantum numbers j−1 /2 and j+1 /2, respectively.2,3

Apart from a normalization constant, their solutions are of
the form RN,j�1/2���=exp�−� /2��	j�1/2	LN

2	j�1/2	���, where N
=0,1 ,2 , . . . is the radial quantum number and LN

2	j�1/2	��� are
Laguerre polynomials.2,5 The corresponding energy levels
are

EN,j�1/2
0 = −

	/4
�N + 	 j �

1
2 	 + 1

2�2 , �7�

where 	=2meZ
2e4=�2 /2me. By introducing the principal

quantum number n=N+ 	j�1 /2	=0,1 ,2. . ., with 	j�1 /2	

n, one infers that each level with fixed n has energy
−	 / �2n+1�2 with degeneracy 2�2n+1�.

For nonzero SO coupling, it is natural to expand the radial
functions f j

� in terms of RN,j�1/2���. By keeping in mind that

the total wave function � j must also be eigenfunction of Ĵz,
one has

f j
���� = e−�/2�	j�1/2	


N=0

�

AN,j
� LN

2	j�1/2	��� . �8�

By substituting the above expansions in Eqs. �5� and �6�, and
by making use of the properties of the Laguerre
polynomials,14 one arrives at the following iterative system
of equations:
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where

CN�,N
j = ��j���N + 2j + 1��N + 2j�N�,N − N�N − 1�N�,N−2

+ ��− j��N�,N+2 − N�,N . �11�

The values of q0, and so the energy levels E=−q0
2 /2me, sat-

isfying Eqs. �9� and �10�, can be easily obtained analytically
in the limit of weak SO coupling. It suffices to recognize that
decoupling Eqs. �9� and �10� leads to two iterative equations
of the form a�AN,j

� +b�AN−2,j
� +c�AN+2,j

� =0, whose solutions
in the weak SO limit are determined simply by the condition
a�=0, since b� and c� are both of order �kR /��2. Up to
order �kR /��2, the coefficients a� are given by
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so that the energy levels EN,j�1/2 of the weak SO interacting
case are

EN,j�1/2 = EN,j�1/2
0 � 2jER − ER, �13�

where EN,j�1/2
0 is the energy spectrum for zero SO interaction

given in Eq. �7�. From Eq. �13�, one sees therefore that the
2�2n+1�-fold degeneracy for zero SO coupling is lifted
when ��0 and that each level is splitted into 2n+1 levels,
each twofold degenerate. The remaining degeneracy is due to
the time-reversal invariance of H and can be removed by
adding a time-reversal breaking term in the Hamiltonian
such as a magnetic field. Note also that Eq. �13� could be
obtained by making use of the method described in Ref. 15.

A comparison between the weak SO coupling result �Eq.
�13� �dashed lines� and the energy levels obtained by a nu-
merical solution of Eqs. �9� and �10� �solid lines� is reported
in Fig. 1 for a few energy levels. The principal quantum
number values n are reported in the left axis, while the radial
and total angular momentum quantum numbers N and j are
indicated in parentheses. What is plotted in Fig. 1 is actually
the quantity

EN,j�1/2 = EN,j�1/2 + ER, �14�

which is the energy spectrum shifted with respect to the
ground state −ER of the free electron coupled to the SO po-
tential. As it is shown in the figure, the ground state �identi-
fied by quantum numbers n=0, N=0, and j= �1 /2� has its
energy lowered by the SO interaction, demonstrating that the
electron gets more tightly bounded as ER increase. This holds
true also for the higher energy levels which, besides being
splitted by the Rashba interaction, have their energies low-
ered for sufficiently large ER values, as it is apparent for most
of the levels plotted in Fig. 1. For states such as n=1
�0, �1 /2� and n=2 �2, �1 /2�, one needs ER /	�2 before
reaching net energy levels lower than the zero SO limit. This
is of course unattainable since, for an unscreened charged
impurity, 	 is of the order of 1 Ry, while the maximum value
of ER to date is of about 0.2 eV.16 The relevant values of
ER /	 are therefore lower than about 0.01 for which, how-
ever, the perturbative result �Eq. �14� is in quantitative good
agreement with the numerical solution plotted in Fig. 1.
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Let us now discuss the relevance of the above results with
respect to a different but somewhat related problem: that of a
2D electron strongly coupled to longitudinal optical phonons
in the presence of a SO Rashba potential �Fröhlich–Rashba
model�.17 To this end, it is useful to compare the exact nu-
merical solutions of Eqs. �9� and �10� with a variational cal-
culation of the ground state energy E0 obtained from the
following electron trial wave function:

�0�r,�� = Ae−ar�J0�br�
J1�br�ei�� , �15�

where a and b are the variational parameters, J0 and J1 are
the Bessel functions, and A is a normalization constant. The
above form for �0�r ,�� was introduced in Ref. 17 in order
to find an upper bound for the ground state of the Fröhlich–
Rashba model. By using Eq. �15�, the energy functional F
= ��0	�H+ER�	�0� can be found analytically,

F =
a2

2me
+

�b − kR�2

2me
+

�a

me
�1 +

K�ib/a��b/a�2

K�ib/a� − E�ib/a�� ,

�16�

where K and E are complete elliptic integrals of the first and
second kinds, respectively. Numerical minimization of Eq.

�16� with respect to a and b provides an upper bound E0 for
the ground state energy. This is plotted in Fig. 2 by the
dashed line and compared with the exact ground state energy
�solid line� obtained from Eqs. �9� and �10�. It is seen that the
simple ansatz �Eq. �15� reproduces fairly well the lowering
of the ground state energy as ER increases. In particular, by
expanding Eq. �16� for small values of ER compared to 	
=�2 /2me, it turns out that E0�−	−ER, which coincides with
Eqs. �13� and �14� for n=0, N=0, and j=1 /2. For very large
values of ER /	, Eq. �16� has the limiting form,

F =
a2

2me
+

�b − kR�2

2me
+

�a

me
ln� ea

4b
� , �17�

where e is the Neper number and should not be confused
with the electron charge. Equation �17� is minimized by set-
ting b=kR and, within logarithmic accuracy, a
�� ln�4kR /�e2�. Hence, the corresponding asymptotic upper
bound for the ground state energy reduces to

E0 � − 	 ln2�4kR

�e2� = −
	

4
ln2�16ER

	e4 � , �18�

indicating that for ER→�, the ground state energy gets in-
definitely lowered by following a squared logarithmic depen-
dence on ER. This result is confirmed in the inset of Fig. 2,
where both the exact result �solid line� and the numerical
minimization of Eq. �16� �dashed line� reduce to straight

FIG. 1. Energy levels obtained from a numerical solution of
Eqs. �9� and �10� �solid lines� as a function of the Rashba energy
ER. The dashed lines are the analytic results of Eq. �13� for the
weak SO limit. All energy levels are shifted with respect to the
ground state of the free electron with SO interaction �Eq. �14�. The
different levels are labeled by the principal quantum number n,
reported in the left axis, and by the radial quantum number N and
the total angular momentum in the z direction j reported in
parentheses.

FIG. 2. Comparison between the exact ground state energy ob-
tained from a numerical solution of Eqs. �9� and �10� �solid line�
and the variational calculation with the ansatz wave function �Eq.
�15� �dashed line�. Inset: the same results plotted as a function of
ln2�ER /	�.
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lines when plotted as a function of ln2�ER /	�.
The functional dependence of the ground state energy on

the SO coupling shown in Eq. �18� was originally obtained
by a different method in Ref. 12 where, however, a cutoff
parameter was introduced to prevent a diverging result. As
further noted in Ref. 12, a squared logarithmic behavior
characterizes also the ground state energy of the three-
dimensional �3D� hydrogen atom in an extremely strong
magnetic field H,18,19 supporting the interpretation that a 2D
electron in the presence of a strong Rashba SO interaction
behaves effectively as a one-dimensional �1D� particle. The
correspondence between 1D-like behavior and strong Rashba
interaction has been notices also for bound states of 2D elec-

trons in short range central potentials,12,20 as well as for 2D
electrons coupled to phonons.7,17 Such correspondence, how-
ever, does not appear to have universal validity. In fact, when
the ansatz �Eq. �15� is used in the 2D Fröhlich–Rashba
model, the asymptotic strongly coupled polaron ground state
energy for ER→� does not decreases indefinitely as Eq. �18�
but, rather, it reaches a minimum finite value.17 This is in
striking contrast with the 3D strongly coupled Fröhlich po-
laron in a strong magnetic field, whose ground state energy
has a squared logarithmic functional form as the 3D hydro-
gen atom for H→�,21 due to the 1D confining effect of the
magnetic field on the electron motion.
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